If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2+32x+7=0
a = 21; b = 32; c = +7;
Δ = b2-4ac
Δ = 322-4·21·7
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-2\sqrt{109}}{2*21}=\frac{-32-2\sqrt{109}}{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+2\sqrt{109}}{2*21}=\frac{-32+2\sqrt{109}}{42} $
| 180x=105+31 | | -1+r=r+6 | | 9−4c=17 | | 105+31x=180 | | x+23512=31021 | | -4(x)=5x+3 | | 1=0.6x-0.8x-6 | | 4x+120=150 | | -6x-12=8x+10+8x | | -5(3t-2)+4t=2t-9 | | (-3/7)z=-6 | | 8/4y-10=-2 | | 4(x)=5x+3 | | 2+10=-3(5x-4) | | a^-1=2 | | 5(5x+7)=180 | | 13/x=7/10 | | 8r^2-20r+8=0 | | -2|x|=4 | | -4(7x-7)+4=-28x+32 | | -6x-12=8x=10+8x | | 0=x(7+x)(5+x) | | 0(x)=5x+3 | | 19-2(3x-1)=x+12 | | 6(x-7)-6=-48 | | 8^2-20r+8=0 | | 6a+14=9a-7 | | 7b*(6-4)=63 | | 6r-1=8r-17 | | 4+6=-5(4x-2) | | 2x-7+2x=5x+2 | | (-3/4)(-x+2)=6 |